560 research outputs found

    PI3K in stemness regulation: from development to cancer

    Get PDF
    The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness

    Cracking the context-specific PI3K signaling code.

    Get PDF
    Specificity in signal transduction is determined by the ability of cells to “encode” and subsequently “decode” different environmental signals. Akin to computer software, this “signaling code” governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways

    Cancer-Associated PIK3CA Mutations in Overgrowth Disorders

    Get PDF
    PIK3CA is one of the most commonly mutated genes in solid cancers. PIK3CA mutations are also found in benign overgrowth syndromes, collectively known as PIK3CA-related overgrowth spectrum (PROS). As in cancer, PIK3CA mutations in PROS arise postzygotically, but unlike in cancer, these mutations arise during embryonic development, with their timing and location critically influencing the resulting disease phenotype. Recent evidence indicates that phosphoinositide 3-kinase (PI3K) pathway inhibitors undergoing trials in cancer can provide a therapy for PROS. Conversely, PROS highlights gaps in our understanding of PI3K's role during embryogenesis and in cancer development. Here, we summarize current knowledge of PROS, evaluate challenges and strategies for disease modeling, and consider the implications of PROS as a paradigm for understanding activating PIK3CA mutations in human development and cancer

    Positive correlation between transcriptomic stemness and PI3K/AKT/mTOR signaling scores in breast cancer, and a counterintuitive relationship with PIK3CA genotype

    Get PDF
    A PI3Kα-selective inhibitor has recently been approved for use in breast tumors harboring mutations in PIK3CA, the gene encoding p110α. Preclinical studies have suggested that the PI3K/AKT/mTOR signaling pathway influences stemness, a dedifferentiation-related cellular phenotype associated with aggressive cancer. However, to date, no direct evidence for such a correlation has been demonstrated in human tumors. In two independent human breast cancer cohorts, encompassing nearly 3,000 tumor samples, transcriptional footprint-based analysis uncovered a positive linear association between transcriptionally-inferred PI3K/AKT/mTOR signaling scores and stemness scores. Unexpectedly, stratification of tumors according to PIK3CA genotype revealed a “biphasic” relationship of mutant PIK3CA allele dosage with these scores. Relative to tumor samples without PIK3CA mutations, the presence of a single copy of a hotspot PIK3CA variant was associated with lower PI3K/AKT/mTOR signaling and stemness scores, whereas the presence of multiple copies of PIK3CA hotspot mutations correlated with higher PI3K/AKT/mTOR signaling and stemness scores. This observation was recapitulated in a human cell model of heterozygous and homozygous PIK3CAH1047R expression. Collectively, our analysis (1) provides evidence for a signaling strength-dependent PI3K-stemness relationship in human breast cancer; (2) supports evaluation of the potential benefit of patient stratification based on a combination of conventional PI3K pathway genetic information with transcriptomic indices of PI3K signaling activation

    NODAL/TGFβ signalling mediates the self-sustained stemness induced by PIK3CAH1047R homozygosity in pluripotent stem cells

    Get PDF
    Activating PIK3CA mutations are known “drivers” of human cancer and developmental overgrowth syndromes. We recently demonstrated that the "hotspot" PIK3CAH1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In the present study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of homozygous PIK3CAH1047R cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in heterozygous PIK3CAH1047R was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in homozygous PIK3CAH1047R iPSCs was reversed by pharmacological inhibition of NODAL/TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in human pluripotent stem cells and directly links strong PI3K activation to developmental NODAL/TGFβ signalling. This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations

    Perspective: Potential Impact and Therapeutic Implications of Oncogenic PI3K Activation on Chromosomal Instability

    Get PDF
    Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic

    Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner

    Get PDF
    The PIK3CA gene, which encodes the p110α catalytic subunit of PI3 kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known as PIK3CA-related overgrowth spectrum (PROS). To determine the consequences of genetic PIK3CA activation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knockin of PIK3CA H1047R While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity for PIK3CA H1047R caused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, up-regulation of stemness markers, and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis of PIK3CA-associated cancers revealed that 64% had multiple oncogenic PIK3CA copies (39%) or additional PI3K signaling pathway-activating "hits" (25%). This contrasts with the prevailing view that PIK3CA mutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenic PIK3CA activation and provide insight into the specific role of this pathway in human pluripotent stem cells

    Challenges of maintaining research protocol fidelity in a clinical care setting: A qualitative study of the experiences and views of patients and staff participating in a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trial research has predominantly focused on patient and staff understandings of trial concepts and/or motivations for taking part, rather than why treatment recommendations may or may not be followed during trial delivery. This study sought to understand why there was limited attainment of the glycaemic target (HbA<sub>1c </sub>≤6.5%) among patients who participated in the Treating to Target in Type 2 Diabetes Trial (4-T). The objective was to inform interpretation of trial outcomes and provide recommendations for future trial delivery.</p> <p>Methods</p> <p>In-depth interviews were conducted with 45 patients and 21 health professionals recruited from 11 of 58 trial centres in the UK. Patients were broadly representative of those in the main trial in terms of treatment allocation, demographics and glycaemic control. Both physicians and research nurses were interviewed.</p> <p>Results</p> <p>Most patients were committed to taking insulin as recommended by 4-T staff. To avoid hypoglycaemia, patients occasionally altered or skipped insulin doses, normally in consultation with staff. Patients were usually unaware of the trial's glycaemic target. Positive staff feedback could lead patients to believe they had been 'successful' trial participants even when their HbA<sub>1c </sub>exceeded 6.5%. While some staff felt that the 4-T automated insulin dose adjustment algorithm had increased their confidence to prescribe larger insulin doses than in routine clinical practice, all described situations where they had not followed its recommendations. Staff regarded the application of a 'one size fits all' glycaemic target during the trial as contradicting routine clinical practice where they would tailor treatments to individuals. Staff also expressed concerns that 'tight' glycaemic control might impose an unacceptably high risk of hypoglycaemia, thus compromising trust and safety, especially amongst older patients. To address these concerns, staff tended to adapt the trial protocol to align it with their clinical practices and experiences.</p> <p>Conclusions</p> <p>To understand trial findings, foster attainment of endpoints, and promote protocol fidelity, it may be necessary to look beyond individual patient characteristics and experiences. Specifically, the context of trial delivery, the impact of staff involvement, and the difficulties staff may encounter in balancing competing 'clinical' and 'research' roles and responsibilities may need to be considered and addressed.</p

    Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants

    Get PDF
    Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
    corecore